一、技術原理
該技術采用空氣洞力學原理,針對垂直軸旋轉的風洞模擬,葉片選用了飛機翼形形狀,在風輪旋轉時,它不會受到因變形而改變效率等;它用垂直直線4-5個葉片組成,由4角形或5角形形狀的輪轂固定、連接葉片的連桿組成的風輪,由風輪帶動稀土永磁發(fā)電機發(fā)電送往控制器進行控制,輸配負載所用的電能。
該技術原理根據(jù)空氣片條理論,實際計算可選取垂直風機旋轉軸的切面進行計算模型,按葉片實際尺寸,每個葉片的旋轉軸心距離為N米;用CFD技術進行模擬氣動系數(shù)計算,計算原理采用離散數(shù)字方法求解翼形斷面的氣動力,用網(wǎng)格方法對雷諾數(shù)流動渦量分布比較形成高雷諾數(shù)下對Navier-Stokes方程進行數(shù)字模擬計算的原理結果。
采用稀土永磁材料發(fā)電的原理,配套與空氣洞力學原理的風輪,采用直驅式結構進行旋轉發(fā)電。
專利技術:一種風力發(fā)電機(專利號:ZL200420081310.2)
二、功率特性
根據(jù)H型風力發(fā)電機的原理,風輪的轉速上升速度提高較快(力矩上升速度快),它的發(fā)電功率上升速度也相應變快,發(fā)電曲線變得飽滿(如下圖)。在同樣功率下,垂直軸風力發(fā)電機的額定風速較現(xiàn)有水平軸風力發(fā)電機要小,并且它在低風速運轉時發(fā)電量也較大。
三、結構
由于此種設計結構采用了特殊空氣洞力學原理、三角形向量法的連接方式以及直驅式結構的原理,使得風輪的受力主要集中于輪轂上,因此抗風能力較強;此種設計的特性還體現(xiàn)在對周圍環(huán)境的影響上,運轉時無噪音以及電磁干擾小等特點使得新型垂直軸風力發(fā)電機優(yōu)越性非常明顯。
垂直軸直線葉片永磁發(fā)電機風力發(fā)電電源系統(tǒng)結構圖
附:現(xiàn)有垂直軸風力發(fā)電電源比較:
目前,生產(chǎn)該類型垂直軸風力發(fā)電電源系統(tǒng)產(chǎn)品最多的是日本(2002年開始研究),還有英國、加拿大等國目前也在研制中,這些國家的大部分產(chǎn)品在風輪設計當中采用平行連接桿,這種方式對發(fā)電機輸出軸要求較高,并且結構相對復雜,現(xiàn)場安裝程序也偏多。另外,從力學方面分析,H型垂直軸風力發(fā)電機功率越大、葉片越長、平行桿的中心點與發(fā)電機軸的中心點距離越長,抗風能力就越差,因此,MUCE采取的是三角形向量法,彌補了上述的一些缺點。