羅果夫斯基線圈(Rogowski Coil)用來制作具有開口端的柔性互感器,這種線圈可以很容易地纏繞在待測導(dǎo)體上。羅果夫斯基線圈(Rogowski Coil)包含一個螺旋形線圈,導(dǎo)線一端穿過線圈的中心回到另一端,因此兩個端點都在線圈的同一端。線圈長度根據(jù)相關(guān)的電流測量范圍選定,以便獲得最佳的轉(zhuǎn)換性能。
利用該技術(shù)能夠?qū)Τ跫夒娏鞯淖兓ㄑ葑儯┧俣冗M(jìn)行非常精確的檢測,初級電流在線圈的兩端感應(yīng)一個正比例電壓。電子積分電路將該電壓信號轉(zhuǎn)換成與初級電流成正比的輸出信號。換言之,采用羅果夫斯基線圈(Rogowski Coil)能夠以額外電子元件和標(biāo)定的代價制造非常精確的線性電流互感器。
羅果夫斯基線圈(Rogowski Coil)的感應(yīng)系數(shù)比電流互感器的感應(yīng)系數(shù)低,同時由于其采用了非磁芯材料,因此具有更好的頻率響應(yīng)。此外,由于不存在可能會飽和的鐵芯,它還具有很高的線性度,即使對于高強度的初級電流也是如此。因此該種互感器特別適用于能夠承受高強度或快速變化的電流的功率測量系統(tǒng)。 對于測量高強度電流而言,它還具有外形緊湊和易于安裝的特點,而傳統(tǒng)的電流互感器則體積龐大而且笨重。
由于需要等間隔的繞組來實現(xiàn)對電磁干擾的最大抵抗力,所以此類電流互感器的性能在很大程度上取決于羅果夫斯基線圈的制造質(zhì)量。另外一個關(guān)鍵的特性是導(dǎo)致線圈內(nèi)不連續(xù)的閉合點,致使對外部導(dǎo)體和環(huán)路內(nèi)測量導(dǎo)體的位置產(chǎn)生影響。固定或夾持系統(tǒng)應(yīng)該確保線圈的末端在一個非常精確而且可以重新再確定的位置,以及在將其中一個末端接至輸出導(dǎo)線時的高對稱性。這個領(lǐng)域最近涌現(xiàn)了一些新技術(shù),這些技術(shù)具有特殊的機械和電氣特性,可以為低壓線定位提供更好的精確度和抵抗力。由于低壓線位置產(chǎn)生的誤差在50/60 Hz頻率域一般不超過 +/-3%,而在最新式的羅果夫斯基線圈(Rogowski Coil)互感器上這一誤差已經(jīng)降低到了+/-0.5%以下。
結(jié)論
許多新型裝置都受益于實芯互感器,鉗形技術(shù)的電氣技術(shù)特性并不能與這些實芯互感器相媲美。但是,現(xiàn)存的機器和建筑設(shè)備就無法增加各種實芯裝置,因為無法承受系統(tǒng)停機的損失。用新型材料和技術(shù)來裝備先進(jìn)的鉗形電流互感器,實現(xiàn)了高性能經(jīng)濟核算的狀態(tài)監(jiān)控、功率計量和設(shè)備管理系統(tǒng)的及時更新??焖侔l(fā)展的節(jié)能市場和大型功率測量系統(tǒng)的配置支配著對于高性能且經(jīng)濟合算的鉗形互感器的需求。
鉗形電流互感器并非新鮮上市,但是這些互感器中所采用的傳統(tǒng)技術(shù)卻表現(xiàn)出眾多弊端。這些互感器或者以昂貴的材料制成(如鐵-鎳合金FeNi),或者性能很差,尤其在線性度和相移方面(比如硅鋼FeSi)。新型鐵氧體材料具有顯著改善的導(dǎo)磁率,最終實現(xiàn)了在提供高性能的同時也具有普遍接受的價格。羅果夫斯基線圈(Rogowski Coil)最近也具有很大的進(jìn)展,實現(xiàn)了用于高強度電流的小型、輕型和靈活的互感器,但是需要一些信號適應(yīng)和標(biāo)定來將這些特性發(fā)揮到極致。設(shè)計和制造工藝方面取得的最重要進(jìn)步降低了成本以及減小了原邊電流電纜定位的羅果夫斯基線圈的影響,克服了這些缺點后,Rogowski Coil技術(shù)將是一項非常有前景的技術(shù)。
技術(shù)的多樣性反映了最近進(jìn)展很多的應(yīng)用領(lǐng)域需求的多樣化,由此說明多樣化系統(tǒng)和基礎(chǔ)設(shè)施受到成本和環(huán)境的影響。